3V/5V, 6dB Video Amplifiers with High Output-Current Capability

Abstract

General Description The MAX9504A/MAX9504B 3V/5V, ground-sensing amplifiers with a fixed gain of 6 dB provide high output current while consuming only 10nA of current in shutdown mode. The MAX9504A/MAX9504B are ideal for amplifying DC-coupled video inputs from current digi-tal-to-analog converters (DACs). The output can drive two DC-coupled 150Ω back-terminated video loads in portable media players, security cameras, and automotive video applications. The MAX9504B features an internal 160 mV input offset to prevent output sync tip clipping when the input signal is close to ground. The MAX9504A/MAX9504B have -3dB large-signal bandwidth of 42 MHz and -3 dB small-signal bandwidth of 47 MHz . The MAX9504A/MAX9504B operate from a single +2.7 V to +5.5 V supply and consume only 5 mA of supply current. The low-power shutdown mode reduces supply current to 10nA, making the MAX9504A/MAX9504B ideal for low-voltage, battery-powered video applications. The MAX9504A/MAX9504B are available in tiny 6-pin μ DFN ($2 \mathrm{~mm} \times 2 \mathrm{~mm}$) and 6-pin SOT23 packages, and are specified over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ extended temperature range.

Applications

Car Navigation Systems
Security Cameras
Portable Media Players
Low-Power Video Applications
Y/C-to-CVBS Mixer
Pin Configurations

- DC-Coupled Input/Output
- Drives Two DC-Coupled Video Loads
- Direct Connection to Ground-Referenced DAC
- 42MHz Large-Signal Bandwidth
- 47MHz Small-Signal Bandwidth
- Internal 160mV Input Offset (MAX9504B)
- Single-Supply Operation from +2.7V to +5.5V
- 10nA Shutdown Supply Current
- Small μ DFN ($2 \mathrm{~mm} \times 2 \mathrm{~mm}$) and SOT23 Packages

Ordering Information

PART	PIN- PACKAGE	PKG CODE	OFFSET $\mathbf{(m V)}$	TOP MARK
MAX9504AELT-T	$6 \mu D F N-6$	$\angle 622-1$	0	AAJ
MAX9504AEUT+T	6 SOT23-6	U65-3	0	ABWC
MAX9504BELT-T	$6 \mu D F N-6$	$L 622-1$	160	AAK
MAX9504BEUT+	6 SOT23-6	U65-3	160	ABWD

Note: All devices specified over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operating range.
+Denotes lead-free package.

Block Diagram

3V/5V, 6dB Video Amplifiers with High Output-Current Capability

ABSOLUTE MAXIMUM RATINGS

Vcc to GND \qquad SHDN
IN, OUT, FB, SHDN to GND-0.3V to (VCC +0.3 V)
IN, OUT, FB, SHDN to GND-0.3V to (VCC +0.3 V)
 (V) 6 V

OUT Short-Circuit Duration to VCC or GND C)

Continuous
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$) \qquad
\qquad .695 mW 6 -Pin μ DFN (derate $4.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)
 377 mW

Operating Temperature Range \qquad $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature ... $150^{\circ} \mathrm{C}$
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

$\left(V_{C C}=3.0 \mathrm{~V}, G N D=0 \mathrm{~V}, \mathrm{~V}_{I N}=0.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\right.$ infinity to $\mathrm{GND}, \mathrm{FB}$ connected to $\mathrm{OUT}, \overline{\mathrm{SHDN}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

3V/5V, 6dB Video Amplifiers with High Output-Current Capability

AC ELECTRICAL CHARACTERISTICS

($\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega$ to $\mathrm{GND}, \mathrm{FB}$ connected to $\mathrm{OUT}, \overline{\mathrm{SHDN}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Small-Signal -3dB Bandwidth	BWSs	$\mathrm{V}_{\text {OUT }}=100 \mathrm{mV} \mathrm{VP-P}$			47		MHz
Large-Signal -3dB Bandwidth	BWLS	VOUT $=2 \mathrm{~V}_{\text {P-P }}$			42		MHz
Small-Signal 0.1dB Gain Flatness	BW0.1dBSS	$V_{\text {OUT }}=100 \mathrm{mV} \mathrm{V}_{\text {P-P }}$			10		MHz
Large-Signal 0.1dB Gain Flatness	BW0.1dBLS	VOUT $=2 \mathrm{~V}_{\text {P-P }}$			12		MHz
Slew Rate	SR	Vout $=2 \mathrm{~V}$ step			165		V/ $\mu \mathrm{s}$
Settling Time to 1\%	ts	Vout $=2 \mathrm{~V}$ step			25		ns
Power-Supply Rejection Ratio	PSRR	$\mathrm{f}=100 \mathrm{kHz}$	MAX9504A		75		dB
			MAX9504B		49		
Output Impedance	ZOUT	$f=5 \mathrm{MHz}$			2.5		Ω
Differential Gain	DG	NTSC	$V_{C C}=3 V$		0.1		\%
			$V_{C C}=5 V$		0.1		
Differential Phase	DP	NTSC	$V_{C C}=3 V$		0.3		degrees
			$V_{C C}=5 \mathrm{~V}$		0.3		
2T Pulse-to-Bar K Rating		$2 \mathrm{~T}=250 \mathrm{~ns}$, bar time is $18 \mu \mathrm{~s}$, the beginning 2.5% and the ending 2.5% of the bar time are ignored			0.2		K\%
2T Pulse Response		$2 \mathrm{~T}=250 \mathrm{~ns}$			0.1		K\%
2T Bar Response		$2 \mathrm{~T}=250 \mathrm{~ns}$, bar time is $18 \mu \mathrm{~s}$, the beginning 2.5% and the ending 2.5% of the bar time are ignored			0.1		K\%
Nonlinearity		5-step staircase			0.1		\%
Group Delay Distortion	D/dT	$\mathrm{f}=100 \mathrm{kHz}$ to 5.5 MHz			2		ns
Peak Signal-to-RMS Noise	SNR	$\mathrm{V}_{\text {IN }}=1 \mathrm{~V}_{\text {P-P, }} 100 \mathrm{kHz}<\mathrm{f}<5 \mathrm{MHz}$			65		dB
Enable Time	ton	VIN $=1 \mathrm{~V}$, V OUT settled to 1% of nominal			300		ns
Disable Time	toff	$\mathrm{V}_{\text {IN }}=1 \mathrm{~V}$, V $\mathrm{V}_{\text {OUT }}$ settled to 1% of nominal			85		ns

Note 1: All devices are 100% production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Specifications over temperature limits are guaranteed by design.
Note 2: Voltage gain ($\mathrm{A} v$) is referenced to the input offset voltage; i.e., an input voltage of $\mathrm{V}_{\mathbb{I}}$ would produce an output voltage of $V_{\text {OUT }}=A V \times\left(V_{I N}+V_{O S}\right)$.

3V/5V, 6dB Video Amplifiers with High Output-Current Capability

$\left(\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega\right.$ to GND , FB connected to $\mathrm{OUT}, \overline{\mathrm{SHDN}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

3V/5V, 6dB Video Amplifiers with High Output-Current Capability

Typical Operating Characteristics (continued)

$\left(V_{C C}=3.0 V, G N D=0 V, V_{I N}=0.5 V, R L=150 \Omega\right.$ to $G N D, F B$ connected to $O U T, \overline{S H D N}=V_{C C}, T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

3V/5V, 6dB Video Amplifiers with High Output-Current Capability

$\left(V_{C C}=3.0 V, G N D=0 V, V_{I N}=0.5 V, R L=150 \Omega\right.$ to $G N D, F B$ connected to $O U T, \overline{S H D N}=V_{C C}, T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Pin Description

PIN		NAME	
SOT23	$\boldsymbol{\mu D F N}$		
1	4	OUT	Video Output
2	2	GND	Ground
3	3	IN	Video Input
4	1	VCC	Power-Supply Input. Bypass VCC with a 0.1 μ F capacitor to ground as close as possible to VCC.
5	5	$\overline{\text { SHDN }}$	Shutdown Input. Pull $\overline{\text { SHDN }}$ low to place the device in low-power shutdown mode.
6	6	FB	Feedback. Connect FB to OUT.

3V/5V, 6dB Video Amplifiers with High Output-Current Capability

Typical Application Circuit

Detailed Description

The MAX9504A/MAX9504B 3V/5V, 6dB video amplifiers with low-power shutdown mode accept DC-coupled inputs and drive up to two DC-coupled, 150Ω back-terminated video loads. The MAX9504B provides an internal input offset voltage of 160 mV , which allows DC-coupled input signals down to ground without clipping the output sync tip.
The MAX9504A/MAX9504B operate from a single +2.7 V to +5.5 V supply and consume only 5 mA of supply current. The low-power shutdown mode reduces supply current to less than $1 \mu \mathrm{~A}$, making the MAX9504A/MAX9504B ideal for low-voltage, battery-powered video applications.

Output Current Capability

As shown in the Typical Application Circuit, the MAX9504A/MAX9504B can drive up to two 150Ω loads to ground at the same time because the outputs can source guaranteed 45 mA (min) current. Two 150Ω loads to ground is the same as a single 75Ω load to ground.
Since the MAX9504A/MAX9504B can also sink guaranteed 40 mA (min) current, they can also drive two, AC-coupled 150Ω loads. When $V_{C C}>3 V$, the output can swing 2.4VP-P. When Vcc $>4.5 \mathrm{~V}$, the output can swing 2.8VP-P.

Input Offset (MAX9504B)

The MAX9504A/MAX9504B amplify DC-coupled video signals with a gain of $+2 \mathrm{~V} / \mathrm{V}(+6 \mathrm{~dB})$. The MAX9504B features a 160 mV input offset voltage (VOS) that allows a video signal input range to ground without clipping the output sync tip. The MAX9504B output voltage is the sum of the input voltage and the input offset voltage gained up by a factor of 2 .

$$
\text { VOUT }=2 \times\left(\mathrm{V}_{\mathrm{IN}}+\mathrm{V}_{\mathrm{OS}}\right)
$$

For example, if $\mathrm{V} \mathbb{I N}=1 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{OS}}=0.16 \mathrm{~V}$ then:

$$
\text { VOUT }=2 \times(1 \mathrm{~V}+0.16 \mathrm{~V})=2.32 \mathrm{~V}
$$

Shutdown Mode

The MAX9504A/MAX9504B feature a low-power shutdown mode (ISHDN < $1 \mu \mathrm{~A}$) for battery-powered/ portable applications. Driving SHDN high enables the output. Driving SHDN low disables the output and places the MAX9504A/MAX9504B into a low-power shutdown mode. In shutdown, the output resistance is $4 \mathrm{k} \Omega$ (typ) due to the combination of feedback resistors from OUT to ground with FB connected to OUT.

3V/5V, 6dB Video Amplifiers with High Output-Current Capability

Applications Information

Using the MAX9504A/MAX9504B with Video Current DACs

Video current DACs source current into a resistor connected to ground. The output voltage range for composite video and luma (Y) is usually from ground up to 1V (see Figure 1). Notice that the sync tip is quite close to ground. Standard single-supply amplifiers with rail-to-rail outputs have difficulty amplifying input signals at or near ground because their output stages enter a nonlinear mode of operation when the output is pulled close to ground.
The MAX9504B level shifts the input signal up by 160 mV so that the output has a positive DC offset of

Figure 1. Oscilloscope Trace of Luma and Chroma Signals from Video Current DAC

320 mV . As a result, the MAX9504B output stage always operates in the linear mode. Even if the input signal is at ground, the MAX9504B output is at 320 mV .
At the output of a video current DAC, the blank level of the chroma signal is usually between 500 mV to 650 mV . The voltage swing above and below the blank level is approximately $\pm 350 \mathrm{mV}$ (see Figure 1). If the blank level is 550 mV , then the lowest voltage for the chroma signal is 200 mV . For the case of chroma signals, no input level shift is needed because 200mV gained up by two is 400 mV , which is well within the linear output range of the MAX9504A or MAX9504B. Since the MAX9504A does not have an input level shift, the MAX9504A should be used with chroma signals. In summary, use the MAX9504B with composite video and luma signals from a DAC, and use the MAX9504A with chroma signals from a DAC.

Using the MAX9504A/MAX9504B with a Video Reconstruction Filter

 In most video applications, the video signal generated from the DAC requires a reconstruction filter to smooth out the steps and reduce the spikes. The MAX9504 has a high-impedance, DC-coupled input that can be connected directly to the reconstruction filter.For standard-definition video, the video passband is approximately 6 MHz , and the DAC sampling clock is 27 MHz . Normally, a 9 MHz lowpass filter can be used for the reconstruction filter. This section demonstrates the methods to build simple 2nd- and 3rd-order passive Butterworth lowpass filters with 9 MHz cutoff frequency. See Figures 2 and 3.

Figure 2. 2nd-Order Butterworth LPF with MAX9504

3V/5V, 6dB Video Amplifiers with High Output-Current Capability

Figure 3. 3rd-Order Butterworth LPF with MAX9504

2nd-Order Butterworth Lowpass Filter Realization
Table 1 shows the normalized 2nd-order Butterworth LPF component values at $1 \mathrm{rad} / \mathrm{s}$ with a source/load impedance of 1Ω.
With the following equations, the L and C can be calculated for the cutoff frequency (fc) at 9 MHz . Table 2 shows the appropriate L and C values for different source/load impedances, the bench measurement values for the -3dB frequency and the attenuation at 27 MHz . There is approximately 20 dB attenuation at 27 MHz , which decreases the spikes at the sampling frequency.

$$
\begin{aligned}
\mathrm{C} 1 & =\frac{\mathrm{Cn} 1}{2 \pi \mathrm{fcR} 1} \\
\mathrm{~L} 1 & =\frac{\mathrm{Ln} 1 \mathrm{R} 1}{2 \pi \mathrm{fc}}
\end{aligned}
$$

Figure 4 shows the frequency response for $\mathrm{R} 1=\mathrm{R} 2=$ 150Ω. At 6 MHz , the attenuation is about 1.4 dB . The attenuation at 27 MHz is about 20 dB . Figure 5 shows the multiburst response for $\mathrm{R} 1=\mathrm{R} 2=150 \Omega$.

Table 1. 2nd-Order Butterworth Lowpass Filter Normalized Values

Rn1 = Rn2 (Ω)	Cn1 (F)	Ln1 (H)
1	1.414	1.414

Table 2. Bench Measurement Values (2nd-Order LPF)

R1 = R2 $\mathbf{(\Omega)}$	$\mathbf{C 1}$ $\mathbf{(p F)}$	$\mathbf{L 1}$ $\mathbf{(\boldsymbol { \mu H })}$	3dB FREQUENCY $\mathbf{(M H z)}$	ATTENUATION AT $\mathbf{2 7 M H z}(\mathbf{d B)}$
75	330	1.8	8.7	20
150	150	3.9	9.0	20
200	120	4.7	9.3	22
300	82	8.2	8.7	20

Figure 4. Frequency Response for 2nd-Order Lowpass Filter

3V/5V, 6dB Video Amplifiers with High Output-Current Capability

Figure 5. Multiburst Response

3rd-Order Butterworth Lowpass Filter Realization

If a flatter passband and more stopband attenuation are desired, a 3rd-order lowpass filter can be used. The design procedures are similar to the 2 nd-order Butterworth lowpass filter.
Table 3 shows the normalized 3rd-order Butterworth lowpass filter with the cutoff frequency at $1 \mathrm{rad} / \mathrm{s}$ and the stopband frequency at $3 \mathrm{rad} / \mathrm{s}$. Table 4 shows the appropriate L and C values for different source/load impedances, the bench measurement values for the -3dB frequency and the attenuation at 27 MHz . The attenuation is over 40 dB at 27 MHz . At 6 MHz , the attenuation is approximately 0.6 dB for $\mathrm{R} 1=\mathrm{R} 2=150 \Omega$ (Figure 6).

Table 3. 3rd-Order Butterworth Lowpass Filter Normalized Values

Rn1 = Rn2 (Ω)	Cn1 (F)	Cn2 (F)	Cn3 (F)	Ln1 (H)
1	0.923	0.923	0.06	1.846

Figure 6. Frequency Response for 3rd-Order Lowpass Filter

Y/C-to-Composite Mixer and Driver Circuit

 The Y/C-to-composite mixer and driver use two lowpass filters, the MAX9504A and the MAX9504B. In Figure 7 , the top video DAC generates a luma signal, which is filtered through the passive RLC network and then amplified by the MAX9504B. The bottom video DAC generates a chroma signal, which is filtered and then amplified by the MAX9504A.LUMA OUT is directly connected to the output of the MAX9504B through a 75Ω back-termination resistor; likewise, CHROMA OUT to the output of the MAX9504A. CVBS OUT (the composite video with blanking and sync output) is created by AC-coupling the chroma signal to the luma signal through the 470 pF capacitor, which looks like an AC short at the color subcarrier frequency of 3.58 MHz for NTSC or 4.43 MHz for PAL.
This circuit relies upon the feature that the MAX9504A/ MAX9504B can drive two loads at the same time.

Table 4. Bench Measurement Values-3rd Order LPF

$\mathbf{R 1} \mathbf{=} \mathbf{R 2}(\boldsymbol{\Omega})$	$\mathbf{C 1}(\mathbf{p F})$	$\mathbf{C 2} \mathbf{(p F})$	$\mathbf{C 3}(\mathbf{p F})$	$\mathbf{L}(\boldsymbol{\mu H})$	3dB FREQUENCY $\mathbf{(M H z)}$	ATTENUATION AT 27MHz (dB)
75	220	220	15.0	2.2	9.3	43
150	120	120	6.8	4.7	8.9	50
300	56	56	3.3	10.0	9.0	45

3V/5V, 6dB Video Amplifiers with High Output-Current Capability

Figure 7. Y/C-to-Composite Mixer and Driver Circuit

3V/5V, 6dB Video Amplifiers with High Output-Current Capability

AC Output Coupling and Sag Correction

The MAX9504 can use the sag configuration if the output requires $A C$-coupling and $V C C \geq 4.5 \mathrm{~V}$. Sag correction refers to the low-frequency compensation for the highpass filter formed by the 150Ω load and the output capacitor. In video applications, the cutoff frequency must be less than 5 Hz in order to pass the vertical sync interval and avoid field time distortion (field tilt). In the simplest configuration, a very large coupling capacitor ($>220 \mu \mathrm{~F}$ typically) is used to achieve the 5 Hz cutoff frequency. In the sag configuration, two smaller capacitors are used to replace the very large coupling capacitor (see Figure 8). For $\mathrm{V}_{\mathrm{C}} \geq 4.5 \mathrm{~V}, \mathrm{C} 5$ and C 6 are $22 \mu \mathrm{~F}$ capacitors.

Layout and Power-Supply Bypassing The MAX9504A/MAX9504B operate from a single 2.7 V to 5.5 V supply. Bypass the supply with a $0.1 \mu \mathrm{~F}$ capacitor as close to VCC possible. Maxim recommends using
microstrip and stripline techniques to obtain full bandwidth. To ensure that the PC board does not degrade the device's performance, design it for a frequency greater than 1 GHz . Pay careful attention to inputs and outputs to avoid large parasitic capacitance. Whether or not you use a constant-impedance board, observe the following design guidelines:

- Do not use wire-wrap boards; they are too inductive.
- Do not use IC sockets; they increase parasitic capacitance and inductance.
- Use surface-mount instead of through-hole components for better, high-frequency performance.
- Use a PC board with at least two layers; it should be as free from voids as possible.
- Keep signal lines as short and as straight as possible. Do not make 90° turns; round all corners.

Figure 8. SAG Correction Configuration

3V/5V, 6dB Video Amplifiers with High Output-Current Capability

Typical Operating Circuit

Pin Configurations (continued)
Chip Information
PROCESS: BiCMOS
TOP VIEW

3V/5V, 6dB Video Amplifiers with High Output-Current Capability

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

NDTES:

1. ALL DIMENSIDNS ARE IN MILLIMETERS.

FIDT LENGTH MEASURED AT INTERCEPT POINT BETWEEN DATUM A \& LEAD SURFACE.
3. PACKAGE OUTLINE EXCLUSIVE DF MLLD FLASH \& METAL BURR MILD FLASH, PRDTRUSIIN DR METAL BURR SHIULD NDT XCEED 0.25 MM
4. PACKAGE DUTLINE INCLUSIVE DF SILDER PLATING.
5. PIN 1 IS LOWER LEFT PIN WHEN READING TOP MARK

FRIM LEFT TV RIGHT. (SEE EXAMPLE TQP MARK)
6. PIN 1 I.D. DIT IS $0.3 \mathrm{MM} \varnothing$ MIN. LDCATED ABLVE PIN 1.
7. MEETS JEDEC MD178, VARIATION AB

SOLDER THICKNESS MEASURED AT FLAT SECTION DF LEAD
BETWEEN 0.08 mm AND 0.15 mm FRZM LEADTIP
I FAD Tח RF CחPI ANAR WTTHTN 0.1 MM

SYMBDL	MIN	NDMINAL	MAX
A	0.90	1.25	1.45
A1	0.00	0.05	0.15
A2	0.90	1.10	1.30
b	0.35	0.40	0.50
C	0.08	0.15	0.20
D	2.80	2.90	3.00
E	2.60	2.80	3.00
E1	1.50	1.625	1.75
L	0.35	0.45	0.60
L1	0.60 REF.		

3V/5V, 6dB Video Amplifiers with High Output-Current Capability

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

3V/5V, 6dB Video Amplifiers with High Output-Current Capability

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

COMMON DIMENSIONS				
SYMBOL	MIN.	NOM.	MAX.	
A	0.70	0.75	0.80	
A1	0.15	0.20	0.25	
A2	0.020	0.025	0.035	
D	1.95	2.00	2.05	
E	1.95	2.00	2.05	
L	0.30	0.40	0.50	
L1	0.10 REF.			

PACKAGE VARIATIONS				
PKG. CODE	N	e	b	$(\mathrm{N} / 2-1) \times \mathrm{e}$
L622-1	6	0.65 BSC	0.30 ± 0.05	1.30 REF.
L822-1	8	0.50 BSC	0.25 ± 0.05	1.50 REF.
L1022-1	10	0.40 BSC	0.20 ± 0.03	1.60 REF.

NOTES:

1. ALL DIMENSIONS ARE $\operatorname{IN} \mathrm{mm}$. ANGLES IN DEGREES.
2. COPLANARITY SHALL NOT EXCEED 0.08 mm .
3. WARPAGE SHALL NOT EXCEED 0.10 mm .
4. PACKAGE LENGTH/PACKAGE WIDTH ARE Considered as SPECIAL CHARACTERISTIC(S).
5. " N " IS THE TOTAL NUMBER OF LEADS.
6. NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY. \ MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY.
-DRAWING NOT TO SCALE-

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

16 \qquad Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

